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1. Introduction 

As a result of a previous re-analysis, the Taylor Standard Series is described in [1]. For 

the present we are interested in the hull shape and its value in simulations and not 

particularly in the resistance coefficients, though these could be important at some point. 

The original parent form was based on the British armored cruiser, the “Leviathan” of the 

Drake Class built in 1900. Therefore the series is appropriate to twin screws and a cruiser 

type of stern. The original has undergone some significant changes and now the model 

has a 3% bulb at the bow and the forefoot has dropped to the baseline. The maximum 

section has been moved to mid-length from station 19.2 to station 20. 

 

In [1], the parameters that are varied across the models are the ratio of the beam to the 

draft, the longitudinal prismatic coefficient, Cp, and the displacement to length ratio. The 

prismatic coefficient is given by: 
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where V is the immersed volume, Ax is the cross-sectional area at mid-length and L is the 

waterline length. The displacement to length coefficient, CV, is given by: 
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In the re-analysis, the beam-to-draft ratios of the models were 2.25, 3.00, and 3.75. 

Prismatic coefficients ranged from 0.48 to 0.8 and, by extrapolation to 0.86. 

 

To derive the various offspring models from the parent the mid-ships coefficient was held 

constant. The mid-ships coefficient, Cx, is given by: 
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where B is the beam and H is the draft. Variations in Cp are introduced using the non-

dimensional formula that can be derived directly from the definitions in (1) to (3): 
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The offsets are plotted in Figs 1 and 2 to ensure that the table of the parent offsets does 

not contain errors. (This was accomplished by entering the offsets into Excel and using 
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the smoothed plotting option.) In this case 3 improvements were made to smooth out 

minor irregularities in the first and third station data (bow section). Other minor 

improvements could have been implemented but were not. 
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Figure 1. Bow section offsets from adjusted table. 
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Figure 2. Stern section offsets from table. 
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A table of offsets represents the hull shape at a finite number of longitudinal positions 

and depths. Therefore it does not uniquely define the hull shape. This can be overcome 

by specifying an interpolation algorithm. In the following we assume that cubic splines 

are appropriate.  

2. Offspring Models 

The models in the series are derived from the parent using a non-linear transformation, 

which stretches and compresses the parent hull form in the longitudinal direction. The 

shapes of the transverse sections are preserved during this transformation so that it can be 

summarized by a set of curves that represent the cross section of a model in the series as a 

function of the longitudinal distance, x, with the overall prismatic coefficient as a 

parameter. (The bow and stern prismatic coefficients are similar to one another in all 

offspring.) Fig 3 shows the curves from Gertler [1]. The maximum half beam, y, has been 

normalized to unity. As noted previously, the mid-ships point is now half way between 

bow and stern perpendiculars; “FP” and “AP” denote the forward and aft perpendiculars 

respectively. 

 

According to [1], the series model sectional areas for the bow and the stern can be 

described by a fifth order polynomial: 

 fFnNtTPCQy p  . (5) 

Here Q, P, T, N and F are themselves fifth order polynomials in x, the normalized 

longitudinal distance measured from the bow or the stern to mid-ships, where x = 1. The 

parameter t is the slope at x = 0, n is the second derivative at x = 1 and f is related to a 

bulbous bow or transom stern. The coefficients are given in [1]: 
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However, the expression for F should be: 

 5432 247580301 xxxxF  . (7) 

 

This is because we now have F(0) = 1, F(1) = F´(0) = F´(1) = Fʺ(1) = 0 (where primes 

indicate derivatives with respect to x). These relationships are derived partly from the 

requirement that the presence of a bulbous bow should not affect the shape of the hull 

near mid-ships. Also the tangent at the bow is unaffected by the bulb. Because there are 

now 5 constraints to apply to F, there is only one free parameter, other than f, to represent 

the effect of a bulbous bow (or transom stern). Otherwise, using the version of F from 

[1], we find that the value of y at mid-ships is not 1 but is 1 + f, which is very 

undesirable. 

 

The corrected formulae are applied separately to the bow and stern sections. The 

numerical coefficients in the remaining formulae are also subject to certain constraints. In 
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the absence of a bulbous bow or transom stern, the first is that the cross-section is zero at 

the fore or aft perpendicular.  This is obviously satisfied when x = 0. The second is that y 

= 1 at x = 1.  Therefore, as expected we have Q = 1 and P = T = N = 0. Furthermore the 

slope at x = 1 is zero.  This can easily be verified by differentiation. It can also be verified 

that the slope of y at the origin is just t and that the second derivative, d
2
y/dx

2
, at x = 1 is 

just n. 
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Figure 3. Sectional area curves from [1]. 
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An arbitrary fifth order polynomial in x has 6 coefficients. There are 3 fundamental 

constraints described previously. In addition the slope at x = 0 and the second derivative 

at x = 1 are specified. In principle, the remaining arbitrariness is removed by specifying 

Cp. Values for the coefficients P, Q, P, T, N and F have been calculated and the table 2 in 

[1] has been verified. The sectional area curves have also been calculated. 

 

Plots in [1] provide values for t and n as a function of prismatic coefficient. To avoid 

reference to graphs and maintain an automatic digital approach, the plots of t and n are 

represented by fitting polynomials to the appropriate curves. 

 

An example is shown in Fig 4, which shows some calculated sectional area curves for a 

plain stern. These are similar but are certainly not identical to those from [1] depicted in 

Fig 3. The plots in Fig 5 apply to a similar set of parameters, but with a 3 percent bulb at 

the bow (f = 0.03). It is worth noting that sometimes the maximum value of y can be very 

slightly greater than one. 

 

A comparison of the curves in Figs 3, 4 and 5 suggests that the approximation may start 

to fail quite badly for prismatic coefficients smaller than 0.52 (see later discussion). 

Alternatively, this entire approach may be regarded in part as an updated definition of the 

Taylor Standard hull forms. 
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Figure 4. Calculated plain stern sectional area curves for Cp values of 0.52 (-), 0.60 (-) 

and 0.80 (-). 
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Figure 5. Calculated bulbous bow sectional area curves for Cp values of 0.52 (-), 0.60 (-) 

and 0.80 (-). 

 

 

3. An Example 

In practice we would like to specify the waterline length and beam, the draft and the 

block coefficient. The prismatic coefficient and the volumetric coefficient are not so 

interesting. However, we do need the prismatic coefficient to derive the coefficients t and 

n. The block coefficient, CB, is defined by: 

 )/(LBHVCB  . (8) 

 

Combining this with (1) and (3) yields: 

 xBp CCC / . (9) 

 

It is noted in [1] that Cx = 0.925 for the Taylor series parent and its offspring. Therefore 

the prismatic coefficient is about 7.5% greater than the block coefficient. As an example, 

we consider the Olmeda used in the Loch Linnhe trials that took place in Scotland from 

1989 to 1994. This ship is no longer in service. The approximate dimensions and 

displacement are shown in Table 1. 

 
Table 1. Olmeda Characteristics. 

 
Type Fleet Oiler 

Length (m) 180 

Beam (m) 26 

Draft (m) 9.2 

Displacement (tonnes) 29,000 

 

In fresh water the submerged volume is numerically equal to the displacement in metric 

tons. Therefore the block coefficient is about 0.67. If it is assumed that the Olmeda hull 
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was similar to a Taylor series hull, the prismatic coefficient is about 0.73. We can 

determine the values of t and n from the graphs in [1] or an equivalent numerical method. 

For the bow, these are 1.22 and -0.03 respectively; for the stern they are 1.60 and -0.03. 

This allows the appropriate bow and stern sectional area curves to be calculated and these 

are then used to determine a new set of hull offsets derived from the parent. 

4. Algorithm Details 

In the parent hull, the prismatic coefficient of the bow section is 0.574 and that of the 

stern is 0.532. The average of these is 0.553. As noted already, the block coefficient can 

be derived from the prismatic coefficient by multiplying it by the mid-ships coefficient, 

which is 0.925. Therefore the block coefficient of the parent should be 0.512. As a check 

and using the table of offsets in [1], the block coefficient is calculated by numerically 

integrating over the submerged hull volume using the trapezoidal algorithm: this results 

in a value of 0.502, and is about 2% less than the expected value. The difference is due in 

part to the algorithm, which in this case tends to underestimate the volume. 

 

The table of parent hull offsets is stored in an array (copied directly into the program 

from the Excel file to avoid typographical errors) along with vectors that represent the 

stations and their heights above the baseline (up to the load water line). The new value of 

block coefficient for the offspring is an input and from this the new prismatic coefficient 

is calculated. The values of t and n for both bow and stern sections are then found from 

the polynomial fits to the graphs in [1]. Then the hull sectional area curve is calculated as 

described above. 

 

In general the transverse section of each station in the parent model is shifted along the 

longitudinal axis, x, according to the sectional area curves corresponding to both the 

parent and offspring. For each transverse section in the parent, its new position in the 

offspring is found by equating the ordinate, y, of the parent curve at a known parent 

station with the ordinate of the offspring curve at an unknown station. This is 

accomplished with a bisection search method over longitudinal distance x, in which the 

difference between the two y-values is brought very close to zero. 

 

If needed, a set of new offspring offsets can be calculated at a pre-determined set of 

stations by a process of interpolation (using cubic splines). However, in this application a 

distribution of source and sink strengths is calculated. This source distribution represents 

the effect of the hull on the water flow around the hull. Using the “thin ship theory”, the 

sources are placed on the hull’s vertical centreplane running from bow to stern. It can be 

shown [2] that this distribution is proportional to the slope dy/dx. Fig 6 shows the slope 

distribution for a normalized hull for which the immersed volume occupies a unit cube; 

the block coefficient is 0.5. The slopes are shown for 25 longitudinal stations and 5 

equally spaced depths at and below the water line (excluding the keel for which the 

slopes are zero). The curve appropriate to a depth can be identified by noting that, at the 

5
th

 station, the curves are in order of depth with the highest at the waterline. 

 

Near the stern (stations 21 to 24), some slopes exhibit irregularities that appear to be 

associated with the necessity for creating space for the twin propellers. There are other 
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minor irregularities that suggest that the hull may not be as streamlined as it seems as 

well as questions about the accuracy with which the parent hull was measured (or 

tabulated). 
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Figure 6. Taylor hull source distribution for 25 stations: CB = 0.5. 

 

The source distribution is an important consideration in wave making and consequently 

in wave making resistance. The wave amplitudes are approximately proportional to the 

magnitude of the sources. The distribution affects how individual wave components 

interfere. The distribution in Fig 6, which is spread out longitudinally, suggests that 

waves will often cancel and that wave making will be small over a wide range of speeds. 

 

As noted earlier, the approximations adopted in [1] are apt to lead to significant 

differences between the block coefficient entered as input and the block coefficient of the 

achieved offspring. Table 2 shows a comparison between the two coefficients for hulls 

with a 3% bulb and rounded cruiser stern. 

 
Table 2. 

Comparison of Block Coefficients 
 

Desired CB Actual CB 

0.50 0.47 

0.55 0.52 

0.56 0.53 

0.60 0.57 

0.65 0.62 

0.70 0.67 

0.73 0.70 

 

5. Discussion 

The approximations adopted in [1] appear to lead to a block coefficient that is 

significantly less than that desired. However, it is likely that this is mainly due to the use 
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of the trapezoidal method of integration that will tend to underestimate the immersed 

volume. The additional problems with small block coefficients that might have been 

expected do not occur. This implies that the approach in [1] is best regarded as an 

updated definition of the series. Though it would be possible to improve the method of 

integration involving the fitting of curves to the data points, it is questionable whether 

more effort on this topic is worthwhile; in any case there are several other more modern 

methodical series that are available. 

 

When the block coefficient is high and for some ship dimensions (small length and large 

beam) the source distributions suggest that there could be some problems with boundary 

layer separation near the stern. Such hulls could be impractical owing to excessive 

resistance that this implies. 

 

In spite of minor problems, the Taylor standard series is likely to be a useful component 

of simulations.   
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