Sistemas de Ecuaciones Diferenciales Caso No Homogéneo

Algebra II FIUBA 2020

Hallaremos todas las soluciones de sistemas de ecuaciones difereciales lineales a coeficientes constantes de la forma

$$\begin{cases} y'_1 &= a_{11}y_1 + a_{12}y_2 + \dots + a_{1n}y_n + f_1(t) \\ y'_2 &= a_{21}y_1 + a_{22}y_2 + \dots + a_{2n}y_n + f_2(t) \\ \vdots &= \vdots \\ y'_n &= a_{n1}y_1 + a_{n2}y_2 + \dots + a_{nn}y_n + f_n(t) \end{cases}$$

Las funciones $y_1(t), y_2(t), \dots, y_n(t)$ son las **incógnitas** que consideraremos, como en el caso homogéneo, funciones derivables en algún intervalo $I \subset \mathbb{R}$, los coeficientes de las ecuaciones a_{ij} son constantes y f_1, f_2, \dots, f_n serán funciones continuas en I.. La forma matricial del sistema es entonces

$$Y' = AY + F$$

Las solucines a esas ecuaciones lineales no homogéneas tendrán la forma habitual:

$$Y_G = Y_p + Y_h$$

El sistema de 2x2

$$\begin{cases} y_1' = 5y_1 - 6y_2 + t \\ y_2' = 3y_1 - 4y_2 + 1 \end{cases}$$

se escribe como

$$Y' = AY$$
, $Y(t) = \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix}$, $A = \begin{bmatrix} 5 & -6 \\ 3 & -4 \end{bmatrix}$, $F(t) = \begin{bmatrix} t \\ 1 \end{bmatrix}$

Para resolver estas ecuaciones expondremos cómo calcular sus soluciones para los mismos casos que explicamos en el caso de ecuaciones homogéneas.

Caso A diagonal

Cuando A es una matriz diagonal

$$A = \begin{bmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ & & & & \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{bmatrix}$$

ya sabmos que sus autovalores son los elementos de la diagonal $\lambda_i = a_{ii}$ y el autovector correspondiente v_i , es el i-ésimo vector de la base canónica: $v_i = e_i$.

El sistema Y' = AY + F es fácil de resolver ya que las ecuaciones para cada y_i están desacopladas y son de primer orden :

$$y_i'(t) = a_{ii}y_i(t) + f_i(t)$$

Resolvamos un ejemplo.

El sistema de 2x2 con matriz $A = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}$ y $F(t) = \begin{bmatrix} 1+2t \\ 2e^t \end{bmatrix}$, es decir

$$\begin{cases} y_1' = 2y_1 + 1 + 2t \\ y_2' = -y_2 + 2e^t \end{cases}$$

se puede resolver fácilmente ya que podemos trabajar independientemente en cada ecuación

$$y_1(t)=-t-1+c_1e^{2t}$$
 $y_2(t)=e^t+c_2e^{-t}$ $Y(t)=(y_1(t),y_2(t))=(-t-1,e^t)+c_1e^{2t}(1,0)+c_2e^{-t}(0,1)$ Observemos que $Y_G=Y_P+Y_H$, siendo $Y_p=(-t+\frac{1}{2},e^t)$ e $Y_H=c_1e^{2t}(1,0)+c_2e^{-t}(0,1)$

A diagonalizable

En este caso sabemos que existe una base autovectores de A:

 $B = \{v_1, v_2, \cdots, v_n\}$, una matriz P cuyas columnas son los vectores v_i , y D una matriz diagonal

$$P = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}, \qquad D = \begin{bmatrix} \lambda_1 & 0 & 0 & \cdots & 0 \\ 0 & \lambda_2 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

que satisfacen

$$A = PDP^{-1}$$

Entonces si hacemos el cambio de variables propuesto para el caso homogéneo $Y=P\tilde{Y}$, es decir $\tilde{Y}=P^{-1}Y$, el sistema resulta

$$\tilde{Y}' = P^{-1}Y' = P^{-1}(AP\tilde{Y} + F) = D\tilde{Y} + P^{-1}F$$

es decir que tenemos que resolver un sistema diagonal en \tilde{Y} con término independiente $P^{-1}F$. Lo sabemos hacer.

El sistema de 2x2 de primer ejemplo

$$\begin{cases} y_1' &= 5y_1 - 6y_2 + t \\ y_2' &= 3y_1 - 4y_2 + 1 \end{cases}$$

donde
$$A = \begin{bmatrix} 5 & -0 \\ 3 & -4 \end{bmatrix}$$
 , sus autovectores y autovalores

donde
$$A = \begin{bmatrix} 5 & -6 \\ 3 & -4 \end{bmatrix}$$
, sus autovectores y autovalores $v_1 = (1,1), \lambda_1 = -1, \ v_2 = (1,0), \lambda_2 = 2$ y $F(\underline{t}) = (t,1)$

Haciendo el cambio propuesto con $P = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \quad P^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$

$$ilde{Y}' = egin{bmatrix} -1 & 0 \ 0 & 2 \end{bmatrix} ilde{Y} + egin{bmatrix} 1 \ t-1 \end{bmatrix}$$

de donde

$$ilde{Y}(t) = egin{bmatrix} rac{5}{4} + c_1 e^{-t} \ -rac{t}{2} + rac{1}{4} + c_2 e^{2t} \end{bmatrix}$$

volviendo a Y resulta

$$Y(t) = P\tilde{Y}(t) = \begin{bmatrix} \frac{5}{4} - \frac{t}{2} + c_1 e^{-t} + c_2 e^{2t} \\ 1 + c_1 e^{-t} \end{bmatrix}$$

Notemos que nuevamente hemos hallado la solución como suma de una solución particular má las soluciones del homogéneo.

Caso A no diagonalizable

Cuando A no es diagonalizable, sabemos que existen matrices P inversible y J en bloques que satisfacen

$$A = PJP^{-1}, \qquad P^{-1}AP = J$$

Como en el caso de matrices diagonalizables, el cambio de variables propuesto para el caso homogéneo cuando A es de 2×2 y en cada uno de los tres casos posibles para matrices de 3×3 , transformará el sistema en otro de sencilla resolución.

Resolveremos algunos ejemplos

Consideremos $F(t) = \begin{bmatrix} t \\ 1 + e^t \end{bmatrix}$ y $A = \begin{bmatrix} 1 & -4 \\ 4 & -7 \end{bmatrix}$ su único autovalor es $\lambda_1 = -3$, el espacio de autovectores asociados tiene dimensión 1 y está generado, por ejemplo, por $v_1 = (1,1)$. J resulta entonces

$$J = \begin{bmatrix} -3 & 1 \\ 0 & -3 \end{bmatrix}$$

y para hallar v_2 resolvemos

$$(A-3Id)v_2=(1,1) \Rightarrow v_2=(\frac{1}{4},0)$$

entonces tenemos

$$P = \begin{bmatrix} 1 & \frac{1}{4} \\ 1 & 0 \end{bmatrix}, \quad P^{-1} = \begin{bmatrix} 0 & 1 \\ 4 & -4 \end{bmatrix}$$

El sistema en las nuevas variables es

$$\tilde{Y}' = \begin{bmatrix} -3 & 1 \\ 0 & -3 \end{bmatrix} \tilde{Y} + P^{-1}F = \begin{bmatrix} -3 & 1 \\ 0 & -3 \end{bmatrix} \tilde{Y} + \begin{bmatrix} 1 + e^t \\ 4t - 4 - 4e^t \end{bmatrix}$$

que se resuelve fácilmente ya que

$$\tilde{Y}_2' = -3\tilde{Y}_2 + 4t - 4 - 4e^t, \quad \tilde{Y}_1' = -3\tilde{Y}_1 + \tilde{Y}_2 + 1 + e^t$$

de donde

$$\tilde{Y}(t) = \left(-\frac{1}{4}e^t - \frac{20}{27} + \frac{4}{9}t + c_1e^{-3t} + c_2te^{-3t}, \frac{4}{3}t - \frac{16}{9} - e^t + c_2e^{-3t}\right)$$

finalmente

$$Y(t) = \left(-\frac{1}{4}e^{t} - \frac{20}{27} + \frac{4}{9}t + c_{1}e^{-3t} + c_{2}te^{-3t} + \frac{4}{3}t - \frac{16}{9} - e^{t} + c_{2}e^{-3t}, -\frac{1}{4}e^{t} - \frac{20}{27} + \frac{4}{9}t + c_{1}e^{-3t} + c_{2}te^{-3t}\right)$$

Sean
$$F(t) = \begin{bmatrix} 1 \\ t \\ -t \end{bmatrix}$$
, $A = \begin{bmatrix} 0 & -6 & 7 \\ -1 & -1 & 3 \\ -1 & 2 & 0 \end{bmatrix}$, $\lambda_1 = 1$ autovalor

doble con único autovector linealmente independiente,

 $v_1=(1,1,1)$ y $\lambda_2=-3$ autovalor simple con autovector asociado $v_3=(2,1,0).$

$$(A - Id)v_2 = v_1 \Rightarrow v_2 = (1, 0, 1)$$

y realizamos el cambio de variables con

$$J = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -3 \end{bmatrix} \qquad P = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}, P^{-1} = \begin{bmatrix} 1/2 & -1 & 1/2 \\ -1/2 & 1 & 1/2 \\ 1/2 & 0 & -1/2 \end{bmatrix}$$

Resulta el sistema

$$\tilde{Y}' = J\tilde{Y} + \begin{bmatrix} \frac{1}{2} - \frac{3}{2}t \\ -\frac{1}{2} + \frac{1}{2}t \\ \frac{1}{2} + \frac{1}{2}t \end{bmatrix}$$

cuya solución es

$$ilde{Y}(t) = egin{bmatrix} 1 + rac{1}{2}t + c_1 e^t + c_2 t e^{-3t} \ -rac{1}{2}t - c_2 e^t \ rac{1}{6}t + rac{1}{9} + c_3 e^{-3t} \end{bmatrix}$$

entonces

$$Y(t) = \begin{bmatrix} 1 + \frac{1}{2}t + c_1e^t + c_2te^{-3t} - \frac{1}{2}t - c_2e^t + \frac{1}{3}t + \frac{2}{9} + 2c_3e^{-3t} \\ 1 + \frac{1}{2}t + c_1e^t + c_2te^{-3t} + \frac{1}{6}t + \frac{1}{9} + c_3e^{-3t} \\ 1 + \frac{1}{2}t + c_1e^t + c_2te^{-3t} - \frac{1}{2}t - c_2e^t \end{bmatrix}$$

Por último presentaremos otro método para hallar una solución particular del sistema Y' = AY + F.

Ya sabemos que si a ésta le sumamos todas las soluciones de la ecuación homogénea asociada Y' = AY, podremos obtener todas las soluciones.

Ya lo habíamos presentado para el caso de ecuaciones lineales de segundo orden.

Método de variación de las constantes

Conociendo una base para el espacio de soluciones de la ecuación homogénea de $n \times n$, $\{\varphi_1, \varphi_1, \cdots, \varphi_n\}$, se propone una solución particular de la forma

$$Y = c_1 \varphi_1 + c_2 \varphi_1 + \cdots + c_n \varphi_n$$

donde los coeficientes c_i son variables.

Reemplazndo esta función en la ecuación original y teniendo en cuenta que $\varphi_k' = A\varphi_k$, obtenemos

$$Y'(t) = \sum_{j=1}^{n} c'_{j} \varphi_{j}(t) + \sum_{j=1}^{n} c_{j} \varphi'_{j}(t) = \sum_{j=1}^{n} c'_{j} \varphi_{j}(t) + \sum_{j=1}^{n} c_{j} A \varphi_{j}(t)$$

Las funciones c_i deben satisfacer

$$Y'(t) = \sum_{j=1}^{n} c_j' \varphi_j(t) + \sum_{j=1}^{n} c_j A \varphi_j(t) = AY(t) + F(t)$$

es decir

$$\sum_{i=1}^{n} c_j'(t)\varphi_j(t) = F(t)$$

resolviendo esta ecuación n c'_i y luego integrando, obtenemos los c_i para luego construir la Y_P .

Se puede consultar *Ecuaciones Diferenciales con aplicaciones de Modelado*, de Dennis G, Zill (Novena Edición, Cengage Learning) para más detalles.