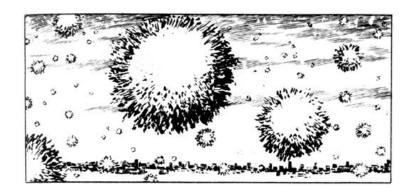
Álgebra II (Curso 23) Primer cuatrimestre, 2021 NOTAS EN LA EMERGENCIA SANITARIA:

BORRADORES PARA LA SEMANA 11 Sebastian Grynberg



ÍNDICE

1.	Introducción	2
1.1.	Semejanza	2
1.2.	Matrices diagonales	2
1.3.	Matrices diagonalizables	2
2.	Autovalores y autovectores	3
2.1.	Independencia lineal.	3
2.2.	Polinomios y matrices	4
2.3.	Sobre el polinomio característico	5
3.	Teorema espectral para matrices diagonalizables	6

1. Introducción

1.1. Semejanza.

Definición 1.1. Decimos que dos matrices A y $B \in \mathbb{K}^{n \times n}$ son semejantes si existe una matriz inversible $P \in \mathbb{K}^{n \times n}$ tal que $P^{-1}AP = B$. El producto $P^{-1}AP$ se denomina transformación de semejanza de A.

Problema. Dada una matriz cuadrada A, reducirla a la forma más sencilla posible mediante una transformación de semejanza.

1.2. Matrices diagonales.

Definición 1.2. Decimos que una matriz $\Lambda \in \mathbb{K}^{n \times n}$ es diagonal si $\Lambda_{ij} = 0$ para todo $i \neq j$. Si $\Lambda \in \mathbb{K}^{n \times n}$ es diagonal escribimos

$$\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n),$$

para indicar que $\Lambda_{ii} = \lambda_i$ para todo $i \in \{1, \dots n\}$. En este caso también escribimos

$$\Lambda = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}.$$

1.3. Matrices diagonalizables.

Definición 1.3. Decimos que una matriz $A \in \mathbb{K}^{n \times n}$ es diagonalizable si A es semejante a una matriz diagonal $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$.

Nota Bene. Nótese que por definición $A \in \mathbb{K}^{n \times n}$ es diagonalizable si y solamente si existe una matriz inversible $P \in \mathbb{K}^{n \times n}$ tal que $P^{-1}AP = \Lambda$, con $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$.

Veamos las cosas más de cerca. Decir que P es inversible significa que las columnas de P constituyen una base de \mathbb{K}^n . Decir que $P^{-1}AP=\Lambda$ es lo mismo que decir que

$$(1) AP = P\Lambda.$$

Si $P = \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix}$, la identidad (1) se puede escribir de la siguiente manera

$$A\begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix} = \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix} \begin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{bmatrix}.$$

Equivalentemente,

$$[Av_1 \quad \cdots \quad Av_n] = [\lambda_1 v_1 \quad \cdots \quad \lambda_n v_n].$$

Esto significa que A es diagonalizable si, y solo si, existe una base $\mathcal{B} = \{v_1, \dots, v_n\}$ de \mathbb{K}^n y n escalares, no necesariamente distintos, $\lambda_1, \dots, \lambda_n \in \mathbb{K}$ tales que

(3)
$$Av_j = \lambda_j v_j \text{ para todo } j = 1, \dots, n.$$

Las igualdades (3) caracterizan unívocamente a la matriz A porque la acción de A sobre los vectores de \mathbb{K}^n , $x \mapsto Ax$, es una transformación lineal y toda transformación está unívocamente determinada por sus valores en una base.

Utilizando que cada vector $x \in \mathbb{K}^n$ se descompone de manera única como una combinación lineal de los vectores de la base \mathcal{B} y escribiendo

$$x = c_1 v_1 + \dots + c_n v_n,$$

con $c_1, \ldots, c_n \in \mathbb{K}$, tenemos

$$Ax = c_1 \lambda_1 v_1 + \dots + c_n \lambda_n v_n.$$

2. Autovalores y autovectores

Definición 2.1. Sea $A \in \mathbb{K}^{n \times n}$. Diremos que $\lambda \in \mathbb{K}$ es un autovalor de A, si existe un vector no nulo $x \in \mathbb{K}^n$ tal que $Ax = \lambda x$. En tal caso, el vector x se llama un autovector de A correspondiente al autovalor λ . El conjunto de todos los autovalores de A se llama el espectro de A, y lo designaremos mediante $\sigma(A)$.

Nota Bene. Nótese que

- $\lambda \in \sigma(A) \iff A \lambda I \text{ es singular } \iff \det(A \lambda I) = 0.$
- $\operatorname{nul}(A \lambda I) \setminus \{0\}$ es el conjunto de todos los autovectores de A correspondientes al autovalor λ .

Definición 2.2. Sea $A \in \mathbb{K}^{n \times n}$ y sea $\lambda \in \sigma(A)$. El subespacio $\operatorname{nul}(A - \lambda I)$ se denomina el autoespacio de A correspondiente al autovalor λ ; su dimensión se denomina la multiplicidad geométrica de λ y la designaremos mediante $\mu(\lambda)$:

$$\mu(\lambda) = \dim (\operatorname{nul}(A - \lambda I))$$
.

Definición 2.3. Sea $A \in \mathbb{K}^{n \times n}$. El polinomio $\chi_A(x) = \det(A - xI)$ se llama el polinomio característico de A.

Nota Bene. Nótese que $\sigma(A) = \{\lambda \in \mathbb{K} : \chi_A(\lambda) = 0\}$ y como $\chi_A \in \mathbb{K}_n[x]$, tenemos que $|\sigma(A)| \leq n$.

2.1. Independencia lineal.

Lema 2.4 (Independencia lineal). Sea $A \in \mathbb{K}^{n \times n}$. Si $\sigma(A) = \{\lambda_1, \ldots, \lambda_m\}$ y $\{v_1, \ldots, v_m\}$ es un conjunto de autovectores de A tal que $Av_j = \lambda_j v_j$ para cada $j \in \mathbb{I}_m$, entonces $\{v_j : j \in \mathbb{I}_m\}$ es linealmente independiente. En otras palabras, todo conjunto formado por autovectores de A correspondientes a autovalores de distintos dos a dos, es un conjunto linealmente independiente.

Demostración. Por el absurdo. Suponemos que $\{v_1,\ldots,v_m\}$ es linealmente dependiente. Entonces, existe $k\in\mathbb{I}_m$ minimal tal que $v_k\in\text{gen}\{v_1,\ldots,v_{k-1}\}$. Por un lado, la minimalidad de k garantiza que $\{v_1,\ldots,v_{k-1}\}$ es linealmente independiente. Por otro lado, existen a_1,\ldots,a_{k-1} no todos nulos tales que $v_k=a_1v_1+\cdots+a_{k-1}v_{k-1}$. Como v_k es un autovector que corresponde al autovalor λ_k podemos escribir

(5)
$$A(a_1v_1 + \dots + a_{k-1}v_{k-1}) = \lambda_k (a_1v_1 + \dots + a_{k-1}v_{k-1}).$$

Como para $j \in \mathbb{I}_{k-1}$, v_j es un autovector correspondiente a λ_j el lado izquierdo de la igualdad (5) es igual a $a_1\lambda_1v_1 + \cdots + a_{k-1}\lambda_{k-1}v_k$, mientras que su lado derecho es igual a $a_1\lambda_kv_1 + \cdots + a_{k-1}\lambda_kv_{k-1}$. En consecuencia,

$$a_1(\lambda_1 - \lambda_k)v_1 + \dots + a_{k-1}(\lambda_{k-1} - \lambda_k)v_{k-1} = 0.$$

Lo que contradice la independencia lineal del conjunto $\{v_1,\ldots,v_{k-1}\}$. Esto es así porque existe un $j \in \mathbb{I}_{k-1}$ tal que $a_j \neq 0$ y por hipótesis $\lambda_j \neq \lambda_k$.

Nota Bene. Nótese que decir que $A \in \mathbb{K}^{n \times n}$ es diagonalizable es lo mismo que decir que existe una base de \mathbb{K}^n compuesta por autovectores de A.

Corolario 2.5. Sea $A \in \mathbb{K}^{n \times n}$. Si $|\sigma(A)| = n$, entonces A es diagonalizable.

Demostración. Para cada $\lambda \in \sigma(A)$, elegimos v_{λ} un autovector correspondiente a λ . De acuerdo con el Lema 2.4, el conjunto $\{v_{\lambda}: \lambda \in \sigma(A)\}$ es linealmente independiente y como contiene n elementos es una base de \mathbb{K}^n .

Corolario 2.6. Sea $A \in \mathbb{K}^{n \times n}$ y sea $\sigma(A) = \{\lambda_1, \dots, \lambda_m\}$. Son equivalentes

- 1. A es diagonalizable.
- 2. $\mathbb{K}^n = \bigoplus_{j=1}^m \text{nul}(A \lambda_j I).$ 3. $n = \sum_{j=1}^m \mu(\lambda_j).$

Demostración. Ejercicio.

Polinomios y matrices.

Sea $A \in \mathbb{K}^{n \times n}$. Si $p \in \mathbb{K}_m[x]$, entonces $p(x) = \sum_{k=0}^m b_k x^k$ se puede evaluar en Ade la siguiente manera

$$p(A) = \sum_{k=0}^{m} b_k A^k,$$

donde, por definición, $A^0 = I$.

Nota Bene. Nótese que si $p \in \mathbb{K}_m[x]$ se factoriza en la forma $p = p_1 p_2$, entonces $p(A) = p_1(A)p_2(A)$. Esto es así porque las potencias de A conmutan entre sí.

Lema 2.7. Sea $A \in \mathbb{C}^{n \times n}$. Si $p \in \mathbb{C}_m[x]$, entonces

$$\sigma(p(A)) = \{p(\lambda) : \lambda \in \sigma(A)\}\$$

Demostración. Primero vamos a demostrar que $\{p(\lambda): \lambda \in \sigma(A)\} \subseteq \sigma(p(A))$. Si $\lambda \in \sigma(A)$, existe $v \neq 0$ tal que $Av = \lambda v$. De aquí se deduce que $A^k v = \lambda^k v$ para todo $k \in \mathbb{N}_0$. Si $p(x) = \sum_{k=0}^m b_k x^k$, escribiendo

$$p(A)v = \left(\sum_{k=0}^{m} b_k A^k\right) v = \sum_{k=0}^{m} b_k A^k v = \sum_{k=0}^{m} b_k \lambda^k v = \left(\sum_{k=0}^{m} b_k \lambda^k\right) v = p(\lambda)v,$$

se concluye que $p(\lambda)$ es un autovalor de p(A) y que v es un autovector de p(A)correspondiente al autovalor $p(\lambda)$.

Ahora vamos a demostrar que $\sigma(p(A)) \subseteq \{p(\lambda) : \lambda \in \sigma(A)\}$. Para eso vamos a demostrar que demostrar que si ξ es un autovalor de p(A), entonces existe λ de Atal que $p(\lambda) = \xi$. Si $p(x) = \sum_{k=0}^{m} b_k x^k$, con $b_m \neq 0$, el Teorema fundamental del Algebra garantiza la existencia de m números complejos $\lambda_1, \ldots, \lambda_m$ tales que

$$p(x) - \xi = b_m \prod_{j=1}^{m} (x - \lambda_j).$$

Evaluando en A tenemos que

$$p(A) - \xi I = b_m \prod_{j=1}^{m} (A - \lambda_j I).$$

Utilizando las propiedades del determinante tenemos

$$\det(p(A) - \xi I) = b_m^m \prod_{j=1}^m \det(A - \lambda_j I).$$

Como $b_m \neq 0$. La anulación del determinante del lado izquierdo de la igualdad es equivalente a la anulación de alguno de los determinantes que se multiplican del lado derecho de la misma. Esto significa que alguno de los λ_j es autovalor de A, y como λ_j es raíz del polinomio $p(x) - \xi$, se concluye que $\xi = p(\lambda_j)$.

Nota Bene. Nótese que si $\lambda \in \sigma(A)$ y $p \in \mathbb{K}_m[x]$, entonces

$$\operatorname{nul}(A - \lambda I) \subseteq \operatorname{nul}(p(A) - p(\lambda)I)$$
.

Nota Bene. Nótese que $A \in \mathbb{K}^{n \times n}$ es inversible, si y solo si, $0 \notin \sigma(A)$. De aquí se puede deducir que si A es inversible, entonces

$$\sigma\left(A^{-1}\right) = \left\{\lambda^{-1} : \lambda \in \sigma(A)\right\}.$$

2.3. Sobre el polinomio característico.

Lema 2.8. El polinomio característico es invariante por transformaciones de semejanza. En otras palabras, si A y $B \in \mathbb{K}^{n \times n}$ son semejantes, entonces sus polinomios característicos son idénticos.

Demostración. Como A y $B \in \mathbb{K}^{n \times n}$ son semejantes, existe una matriz inversible $P \in \mathbb{K}^{n \times n}$ tal que $P^{-1}AP = B$. Escribiendo $P^{-1}(A-xI)P = P^{-1}AP - xI = B - xI$ y utilizando que det (P^{-1}) det(P) = 1, obtenemos

$$\chi_B(x) = \det(B - xI) = \det(P^{-1}(A - xI)P) = \det(P^{-1})\chi_A(x)\det(P) = \chi_A(x).$$

Corolario 2.9. Sea $A \in \mathbb{K}^{n \times n}$ y sea $\sigma(A) = \{\lambda_1, \dots, \lambda_m\}$. Si A es diagonalizable, entonces

(6)
$$\chi_A(x) = (-1)^n \prod_{j=1}^m (x - \lambda_j)^{\mu(\lambda_j)}.$$

Demostración. Para cada $i=1,\ldots,m$ consideramos una base $\mathcal{B}_i=\{v_{i,1},\ldots,v_{i,\mu(\lambda_i)}\}$ del autoespacio de A correspondiente al autovalor λ_i . Como A es diagonalizable, $\mathcal{B}=\bigcup_{i=1}^m\mathcal{B}_i$ es una base de \mathbb{K}^n compuesta por autovectores de \mathbb{K}^n . Si para cada $i=1,\ldots,m$, definimos la matriz $X_i\in\mathbb{K}^{n\times\mu(\lambda_i)}$ mediante

$$X_i = \begin{bmatrix} v_{i,1} & \cdots & v_{i,\mu(\lambda_i)} \end{bmatrix},$$

y consideramos la matriz $P = \begin{bmatrix} X_1 & \cdots & X_m \end{bmatrix}$, tenemos que

$$P^{-1}AP = \begin{bmatrix} \lambda_1 I_{\mu(\lambda_1)} & & & \\ & \ddots & & \\ & & \lambda_m I_{\mu(\lambda_m)} \end{bmatrix},$$

donde $I_{\mu(\lambda_i)}$ es la matriz identidad de $\mathbb{K}^{\mu(\lambda_1) \times \mu(\lambda_i)}$.

Utilizando el Lema 2.8 tenemos

$$\chi_{A}(x) = \prod_{i=1}^{m} \det \left(\lambda_{i} I_{\mu(\lambda_{i})} - x I_{\mu(\lambda_{i})} \right) = \prod_{i=1}^{m} (\lambda_{i} - x)^{\mu(\lambda_{i})} \det \left(I_{\mu(\lambda_{i})} \right)$$
$$= \prod_{i=1}^{m} (-1)^{\mu(\lambda_{i})} (x - \lambda_{i})^{\mu(\lambda_{i})} = (-1)^{n} \prod_{i=1}^{m} (x - \lambda_{i})^{\mu(\lambda_{i})}.$$

Corolario 2.10. Sea $A \in \mathbb{K}^{n \times n}$ y sea $\sigma(A) = \{\lambda_1, \dots, \lambda_m\}$. Si A es diagonalizable, entonces

$$\det(A) = \prod_{i=1}^{m} \lambda_i^{\mu(\lambda_i)} \quad y \ \operatorname{tr}(A) = \sum_{i=1}^{m} \mu(\lambda_i) \lambda_i.$$

Demostración. Ejercicio.

3. Teorema espectral para matrices diagonalizables

Teorema 3.1. Una matriz $A \in \mathbb{K}^{n \times n}$ con espectro $\sigma(A) = \{\lambda_1, \lambda_2, \dots, \lambda_k\}$ es diagonalizable si y sólo si existen matrices $\{G_1, G_2, \dots, G_k\}$ tales que

(7)
$$A = \lambda_1 G_1 + \lambda_2 G_2 + \dots + \lambda_k G_k,$$

donde las G_i tienen las siguientes propiedades

- a) G_i es la proyección sobre $\operatorname{nul}(A \lambda_i I)$ en la dirección de $\operatorname{col}(A \lambda_i I)$.
- b) $G_iG_j = 0$ para $i \neq j$.
- c) $G_1 + G_2 + \dots + G_k = I$.

El desarrollo (7) se denomina la descomposición espectral de A, y las G_i se llaman los proyectores espectrales asociados.

Demostración. Si A es diagonalizable,

$$\mathbb{K}^n = \bigoplus_{i=1}^k \operatorname{nul}(A - \lambda_i I).$$

Es decir, si $X_i \in \mathbb{K}^{n \times \mu(\lambda_i)}$, $i \in \mathbb{I}_k$, es una matriz cuyas columnas son una base de nul $(A - \lambda_i I)$, entonces $P = \begin{bmatrix} X_1 & X_2 & \cdots & X_k \end{bmatrix}$ es una matriz inversible. Si P^{-1} se

particiona en bloques Y_i de tamaños $\mu(\lambda_i) \times n$, tenemos

$$A = \underbrace{\begin{bmatrix} X_1 & X_2 & \cdots & X_k \end{bmatrix}}_{P} \underbrace{\begin{bmatrix} \lambda_1 I_{\mu(\lambda_1)} & & & \\ & \lambda_2 I_{\mu(\lambda_2)} & & \\ & & \ddots & \\ & & & \lambda_k I_{\mu(\lambda_k)} \end{bmatrix}}_{\Lambda} \underbrace{\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_k \end{bmatrix}}_{P^{-1}}$$

$$= \begin{bmatrix} \lambda_1 X_1 & \lambda_2 X_2 & \cdots & \lambda_k X_k \end{bmatrix} \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_k \end{bmatrix} = \lambda_1 \underbrace{X_1 Y_1}_{G_1} + \lambda_2 \underbrace{X_2 Y_2}_{G_2} + \cdots + \lambda_k \underbrace{X_k Y_k}_{G_k}.$$

Por lo tanto,

$$A = \lambda_1 G_1 + \lambda_2 G_2 + \dots + l_k G_k,$$

donde $G_i = X_i Y_i$.

Para probar c) escribimos

$$I = PP^{-1} = \sum_{i=1}^{k} X_i Y_i = \sum_{i=1}^{k} G_i.$$

Para probar b) observamos que

$$P^{-1}P = I \iff Y_i X_j = \begin{cases} I & \text{para } i = j, \\ 0 & \text{para } i \neq j. \end{cases}$$

Esto implica que

$$G_iG_j = X_iY_iX_jY_j = 0$$
 para $i \neq j$.

Para probar a) observamos que la relación $P^{-1}P=I$ también implica que

$$G_i^2 = X_i Y_i X_i Y_i = X_i Y_i = G_i$$
 para todo i.

Esto significa que G_i es la proyección sobre $col(G_i)$ en la dirección de $nul(G_i)$.

Para probar que $col(G_i) = nul(A - \lambda_i I)$, escribimos

$$\operatorname{col}(G_i) = \operatorname{col}(X_i Y_i) \subseteq \operatorname{col}(X_i) = \operatorname{col}(X_i Y_i X_i) = \operatorname{col}(G_i X_i) \subseteq \operatorname{col}(G_i).$$

Por lo tanto,

$$col(G_i) = col(X_i) = nul(A - \lambda_i I).$$

Para probar que nul $(G_i) = \operatorname{col}(A - \lambda_i I)$, usamos c) para escribir

$$A - \lambda_i I = \sum_{i=1}^k \lambda_j G_j - \lambda_i \sum_{i=1}^k G_j = \sum_{i=1}^k (\lambda_j - \lambda_i) G_j = \sum_{i \neq j} (\lambda_i - \lambda_j) G_j.$$

Multiplicando por G_i ambos lados de la igualdad y utilizando b) tenemos

$$G_i(A - \lambda_i I) = 0,$$

de donde resulta que $\operatorname{col}(A-\lambda_i I)\subseteq \operatorname{nul}(G_i)$. Como $\operatorname{nul}(A-\lambda_i I)=\operatorname{col}(G_i)$, el teorema de la dimensión implica

$$\dim\left(\operatorname{col}(A - \lambda_i I)\right) = n - \dim\left(\operatorname{nul}(A - \lambda_i I)\right) = n - \dim\left(\operatorname{col}(G_i)\right) = \dim\left(\operatorname{nul}(G_i)\right),$$

y por lo tanto, $col(A - \lambda_i) = nul(G_i)$.

Recíprocamente, si existen matrices G_1, G_2, \ldots, G_k tales que $A = \sum_{i=1}^k \lambda_i G_i$ que satisfacen las propiedades a), b) y c), entonces A es diagonalizable.

Por a) G_i es la proyección sobre $\operatorname{nul}(A - \lambda_i I)$ en la dirección de $\operatorname{col}(A - \lambda_i I)$. Esto implica que

$$\dim \operatorname{col}(G_i) = \dim \operatorname{nul}(A - \lambda_i I) = \mu(\lambda_i).$$

Por b) $G_iG_j = 0$ para $i \neq j$. Esto implica que

$$\operatorname{col}(G_i) \cap \left(\sum_{j \neq i} \operatorname{col}(G_j)\right) = \{0\},\$$

y en consecuencia

$$\operatorname{col}\left(\sum_{i=1}^{k} G_i\right) = \bigoplus_{i=1}^{k} \operatorname{col}(G_i).$$

Por c) $\sum_{i=1}^k G_i = I$. Por la fórmula para la dimensiones de una suma directa y el resultado anterior tenemos

$$n = \dim \left(\bigoplus_{i=1}^k \operatorname{col}(G_i) \right) = \sum_{i=1}^k \dim \left(\operatorname{col}(G_i) \right) = \sum_{i=1}^k \mu(\lambda_i).$$

Por el Corolario 2.6 esto implica que A es diagonalizable.

Continuar'a.