library(lpSolve) #Defino variables del problema #xi: cantidad de tableros del tipo i producidos #zi: cantidad de tableros del tipo i comprados #i=a,b,c,d #Restricciones de especificación #E) 0.05xa+ 0.05xb+ 0.05xc+ 0.05xd <= 1200 #AR) 0.1Xa + 0.12Xb + 0.14xc + 0.18xd <= 3600 #C) 0.2xa + 0.25xb + 0.3xc + 0.25xd <= 5000 #AJ) (0.8/9)xa + (1/9)xb + (0.6/9)xc + (1/9)xd <= 3000 #CCprod y compra) (0.2/9)xa + (0.3/9)xb + (0.3/9)xc + (0.3/9)xd + 0.03za + 0.05zb # + 0.04zc + 0.04zd <= 3000 #Restricciones de balance # xa + za = 4000 # xb + zb = 3000 # xc + zc = 8000 # xd + zd = 5000 coef<-c(500,600,1200,1000,600,750,1800,800) A<-matrix(c(0.05,0.05,0.05,0.05,0,0,0,0, 0.1,0.12,0.14,0.18,0,0,0,0, 0.2,0.25,0.3,0.25,0,0,0,0, 0.8/9,1/9,0.6/9,1/9,0,0,0,0, 0.2/9,0.3/9,0.3/9,0.3/9,0.03,0.05,0.04,0.04, 1,0,0,0,0.8,0,0,0, 0,1,0,0,0,0.8,0,0, 0,0,1,0,0,0,0.8,0, 0,0,0,1,0,0,0,0.8),ncol=8,nrow=9,byrow=TRUE) b<-c(1200,3600,5000,3000,3000,4000,3000,8000,5000) dir<-c(rep('<=',5),rep("=",4)) valobj <- lp('min', coef, A, dir, b) print(A) print(valobj) solvar <- lp('min', coef, A, dir, b)$solution print(solvar)